Grade 12 Calculus

PRESENTED BY: AntoneHte Jordaan

DATE: 09 May 2023

Real World

- Science and Medicine
- Technology and Engineering
- Business and Economics
- History and Philosophy
- Arts and Athletics

Real World

- Science and Medicine

Cardiac Output
Understanding Plaque Buildup: Modeling Tumor Growth

Real World

- Technology and Engineering

Rocket Propulsion
3D Computer Graphics
Physics Engines in-Video Games

Real World

- Business and Economics

Maximizing Profit

Continuously Compounded Interest

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t} & =P\left[\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}\right]^{t} \\
& =P\left[e^{r}\right]^{t} \\
& =P e^{r t}
\end{aligned}
$$

Real World

History and Philosophy

A Failure of Intuition

Real World

- Arts and Athletics

Derivatives in String Art
Calculating Horsepower of an Offensive Lineman

Quadratic Functions

Limits

Straight lines

$$
f(x)=\frac{x^{2}-16}{x-4}
$$

Limit $x=4$ (boulder)

$$
f(x)=\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}
$$

Limits

Level 1 Questions

$$
f(x)=\lim _{x \rightarrow-3} 3 x
$$

Level 2 Questions

Level 3 Questions

$$
f(x)=\lim _{x \rightarrow-2} \frac{x^{2}-4}{3 x}
$$

$$
f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Average Gradient

When dealing with straight line graphs, it is easy to determine the slope of the same graph by calculating the change in x-value between two points and the change in y-value between the same two points. Then we substitute these into the formula for

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

However, when dealing with curves the gradient changes at every point-on the curve, therefore we need to work with the average gradient: The average gradient between two points is the gradient of a straight line drawn between the two points.

Average Gradient
$\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{x})$

Average Gradient

$$
f(x+h)-f(x)
$$

Investigate the average gradient between 2 points: By calculation we can show that this is equivalent to:

Average Gradient

$$
\frac{f(x+h)-f(x)}{h}
$$

Can you also see that as the points on the x-axis get closer together, the average gradient changes?
So as the two points get closer together (as becomes 0) the average gradient between the two points becomes the actual gradient at the point

However, h cannot equal 0 as that would give us a 0 denominator, so we must use limits.

The actual gradient at a point is called the derivative.

First Principle and Average Gradient

Rules for Differentiation and the language behind it

$D_{x}[f(x)]$ - the derivative of $f(x)$ with respect to x $\frac{d y}{d x}$ - the derivative of y with respect to x y^{\prime} or f^{\prime} - the derivative of y or $f(x)$

Application of Derivatives

Derivatives are useful in many aspects of life

Application of Derivatives

Derivatives are useful in many aspects of life to find maximum and or minimum of some quantity.

Application of Derivatives

- Science and Medicine
- Technology and Engineering
- Búsiness and Economics History and Philosophy
- Arts and Athletics

Cubic Functions

Important Concepts and Terminology

- Stationary points - zero gradient
- Local maximum
- Local minimum
- Negative gradient
- Positive gradient
- Point of Inflection

Cubic Functions

Important Concepts and Terminology

Cubic Functions

Important Concepts and Terminology

- TWO stationary points, in which case the possible graphs for $\mathrm{a}>0$ are:

And for $a<0$:

Cubic Functions

Important Concepts and Terminology

- ONE stationary point, in which case the possible graphs are:

Cubic Functions

Stationary points - Minimum or maximum

$$
f^{\prime}(x)=0
$$

Point of Inflection

$$
f^{i}(x)=0
$$

Tangent first derivative will give the equation of the gradient of the tangent at a point.

5400

$$
\stackrel{\square}{\square}
$$

