
PRESENTED BY: CORNETTE ESTERHUIZEN
DATE: 16 MARCH 2023
WEBINAR

THE VALUE OF CODING AND
ROBOTICS IN THE FOUNDATION
PHASE

Coding and robotics in South Africa – what schools will actually be teaching

Basic Education minister Angie Motshekga has
called for comments to amend the Curriculum and
Assessment Policy Statement (CAPS) to make
provision for coding and robotics at South African
schools.

In a gazette and notice published on the
department’s website, Motshekga said
that the subjects would form part of the
curriculum at different school levels
from Grade R to Grade 9.

The coding and robotics subjects are aimed at guiding and preparing learners to solve
problems, think critically, work collaboratively and creatively, and function in a digital
and information-driven world, the department said.

It added that learners will be able to apply digital and ICT skills and to transfer these
skills to solve everyday problems and its possibilities.

Curriculum and Assessment Policy Statement
Grades R-3
CODING AND ROBOTICS

Instructional time in the
Foundation Phase

Instructional time for Grades R, 1 and 2 is 24 hours and for Grade 3 is 27 hours.
• Ten hours are allocated for languages in Grades R-2 and 11 hours in Grade 3. A maximum of 8 hours and a minimum of 7 hours are allocated

for Home Language and a minimum of 2 hours and a maximum of 3 hours for Additional Language in Grades 1-2. In Grade 3 a maximum of 8
hours and a minimum of 7 hours are allocated for Home Language and a minimum of 3 hours and a maximum of 4 hours for First Additional
Language.

• In Life Skills Beginning Knowledge is allocated 1 hour in Grades R – 2 and 2 hours as indicated by the hours in brackets for Grade 3

INTRODUCTION TO CODING AND ROBOTICS
What is Coding and Robotics?
The Coding and Robotics subject is central to
function in a digital and information-driven world;
apply digital ICT skills and transfer these skills to
solve everyday problems in the development of
learners. It is concerned with the various inter-
related areas of Information Technology and
Engineering. The subject studies the activities that
deal with the solution of problems through logical
and computational thinking. Draft Policy

In the Curriculum and Assessment Policy Statement (CAPS) the subject Coding and Robotics in
Foundation Phase (Grades R-3) has been organised into five study areas:
Pattern Recognition,
Algorithms and Coding,
Robotics Skills,
Internet and e-communicating
Application Skills has been organised in this way in order to ensure that the foundational skills,
values and concepts of early childhood development and of the subjects offered in Grades 4 - 9
are taught and developed in Grades R-3.

Introduction – Draft policy

Beginning Knowledge and Personal and Social relationships are integrated in the
topics. Coding and Robotics is a subject that transverses across the other core
Foundation Phase subjects namely Languages (home and First Additional) and
Mathematics that ultimately strengthens and supports them.

Specific Aims:
The Coding and Robotics subject is aimed at guiding and preparing learners to solve problems, think critically,
work collaboratively and creatively, function in a digital and information-driven world, apply digital and ICT skills
and to transfer these skills to solve everyday problems and its possibilities, including equipping learners for
meaningful and successful living in a rapidly changing and transforming society.
Through Coding and Robotics learners are exposed to a range of knowledge, skills and values that strengthen
their:
 aesthetic, creative skills and cognitive development, knowledge through engaging in dance, music, drama and
visual art activities
 knowledge of digital and ICT skills supported by the technological process and computational thinking skills;

Understanding of the relationship between people and the environment, awareness of social relationships, and
elementary science;
 physical, social, personal and emotional development.
2.3 Focus Content Areas:
The Coding and Robotics Foundation Phase subject consist of the following Knowledge Strands:
 Pattern Recognition and Problem Solving
 Algorithms and Coding
 Robotic Skills
 Internet and E-Communication skills
 Application Skills

Grade R – Grade 3
In the Foundation phase (Grades R-3) the subject has been organised into
five study areas:

Foundation Phase Initiative

Learning through play
with Six Bricks

Introduction to Six Bricks and the FPI Programme
Introduction to Unplugged Coding
Introduction to Computational Thinking
Implementing of Computational Thinking Activities
Using Six Bricks Mats
Games
Implementing the Programme in the Classroom

Developmental skills

What are the benefits of engaging in Six Bricks Activities?
When children start formal school education, they still require concrete manipulatives to help
them to grasp difficult concepts, and they still need to use their whole body to learn.

Six Bricks on each child’s desk offers that assistance and makes for a whole lot of learning
through play!
When running activities with Six Bricks, it becomes very easy to see that the following skills
can be developed in the children:
Working memory
Inhibitory control
Cognitive flexibility
Developmental skills –
Gross and fine motor skills

Children are not
born with executive

function skills.

BUT: They are born
with the potential to

develop them.

It is a slow process
that begins with

infancy.

And continues into
early childhood and is

shaped by their
experience.

Developmental Skills
Physical - Gross & Fine motor
Speech & Language – listening; language development; vocabulary; expression through language; language construction; storytelling, writing & reading
Emotional & Social – self-image; control emotions; empathy; social interaction
Cognitive – problem solving; critical thinking; creativity
Perceptual – visual, auditory, tactile discrimination & memory; visual & auditory analysis & synthesis; sequential memory; spatial relationships; foreground; background; visual closure; dominance

What is coding and robotics?

• We love working with computers because they seem to be able to do anything,
BUT computers cannot think for themselves

• That is why we need coders: Coders write code (instructions – the language)
for a computer – telling the computer how to solve problems

• We call this code a ‘program’

• Learning how to code is one of the core skills or competences for children to develop
problem solving skills – and not just for computing!

• Robotics is a 3D tool that we use to help students
understand IT concepts

• Robotics is made of 3 parts: a machine, programming, and sensors

In the middle ages, only select groups of people (e.g.,
priests and scribes) could read and write. But as the world
evolved, increasingly more people needed these skills

What is the difference?Coding vs Programming

• Coding is the act of writing the instructions that you send to a computer to do
something for you

• Programming is the process of creating an outline and structure for the program’s
code that follows certain standards, before the actual code is written to perform
the task it needs to perform

• Coding forms a part of programming
• FOR A CODER NO PROBLEM IS TOO BIG

• Coders love mysteries –they break big problems into smaller ones and solve each
problem on a time

Coding is seen as a key competence for learners to develop problem-solving skills.
Coding as an academic skill is seen as fitting into the breadth of skills learners need
and is part of logical reasoning.

By writing a set of instructions to get from the door to your desk, you are using code (go left, go right, sit
down, etc.); but in understanding, planning and developing the code for you to get from the door to your
desk, you are programming (should it written in English, is the person able to walk, how many obstacles
do we have to avoid, etc.).

Why unplugged coding ?
Unplugged … coding doesn’t always have to be
attached to a computer

• Teach programming concepts using games or activities that can be done
offline using physical objects, such as blocks, paper and markers

• Help learners understand abstract concepts through physical objects that
can be touched, manipulated, and described - make learning tangible

• Activities can include different sensory approaches - physical movement,
using music, manipulating objects, drawing pictures

• Unplugged lessons are particularly useful for building and maintaining a
collaborative classroom environment

• The biggest part of Unplugged Coding is teaching students to
be confident problem solvers!

Simply put, coding is used for communicating with
computers. People use coding to give computers and other
machines instructions on what actions to perform. Can we
teach children the basics of creating instructions or code
without the use of technology? Yes!

Where does it fit? CAPS Curriculum Teaching Plan

At this point, the CAPS curriculum is not finalized but based on the draft
curriculum, Unplugged Coding with Six Bricks can provide for the following:
• The new CAPS Coding and Robotics Curriculum is currently designed to target

5 specific areas:
1. Pattern Recognition and Problem Solving

Many unplugged activities to teach these topics
2. Algorithms and Coding

Many unplugged activities to teach these topics
3. Robotics

Students use creative thinking and imagination to apply coding concepts to robotics
Build machines that they code physically without computers

4. Internet and E-Communications
Teaching the concepts so that students have a basic understanding

5. Applications
Limited scope for unplugged coding

Use your body as a
tool to introduce
the concept

Investigate the concept using
concrete manipulatives

Apply the
concepts

We will follow a simple
process to teach:

1. Use your body to
learn the concepts

2. Use Six Bricks (or
other resources) to
understand the
concepts

3. Students work on
their own or in pairs
/ groups to apply the
concepts

Computational Thinking
What is computational thinking?

The process of breaking down a problem into
simple enough steps that even a computer
would understand

Computational Thinking (CT) is a problem-solving
process that uses logical and analytical skills to
follow directions or instructions – just like
programming.

Fundamental skill useful for everyone

Let’s think like a computer
using a problem-solving process

BACK TO BACK ACTIVITY
Teaching points: Students will need to
express abstract concepts to each
other. Tell the computer how to do
what they want them to do. Discuss
concepts in such a way that the
recipient understands is an important
part of programming.

21st century skills are
based on reasoning
and logical thinking

The ability of coding
is called “algorithmic
thinking” and
“computational
thinking”

In performing the coding process, it is
important to follow the steps of
comprehending, analyzing, solving the
problems, and making the results as
algorithms, establishing the correct
algorithm, and encoding the algorithm with
a program over the language.

Problem-solving skills can be improved by
computational thinking processes. Through
computational thinking, we can explain the
problem and use simple methods or formulas to
solve the problem by computer computation

What is computational thinking?

Computational thinking allows us to take a
complex problem, understand what the
problem is and develop possible solutions.

We can then present these solutions in a way

This broad problem-solving technique includes
four elements: decomposition, pattern
recognition, abstraction and algorithms
Students will need to express abstract
concepts to each other.

In performing the coding process, it is
important to follow the steps of
comprehending, analyzing, solving the
problems, and making the results as
algorithms

In this process, coders should use
their algorithmic thinking or
computational thinking skills

The four
cornerstones:

Decomposition
Pattern recognition

Abstraction
Algorithms

&
Evaluation and

debugging

Breaking down a problem - breaking down a complex problem
into smaller, more manageable parts (decomposition)

What is important? – focusing on the important information
only, ignoring irrelevant detail (abstraction)

What is the same?– looking for similarities among and within
problems (pattern recognition)

Can we code? - developing a step-by-step solution to the
problem, or the rules to follow to solve the problem ,
algorithmic thinking.

Did we get it right? – evaluate process, find errors then
problem solve solutions (evaluation & debugging)

Its not even thinking like a computer, as computers do not,
cannot think. CT enables you to work out exactly what to tell
the computer what to do.

Young children can learn the basic concepts of coding. These concepts are important stepping stones not
only for learning to code, but for developing skills like critical thinking and problem solving.

There are 5 components of CT. Each component is as
important as the others. They are like legs on a table - if one leg
is missing, the table will probably collapse.
Algorithmic Thinking – developing a step by step solution to
the problem or the rules to follow to

Computational thinking involves taking a complex problem and breaking it down into a series of small,
more manageable problems (decomposition). Each of these smaller problems can then be looked at
individually, considering how similar problems have been solved previously (pattern recognition) and
focusing only on the important details, while ignoring irrelevant information (abstraction). Next, simple
steps or rules to solve each of the smaller problems can be designed and a step by step solution is created
(algorithms). Testing solutions, especially if they are not working, is an ongoing process – requiring
perseverance and problem solving know how (evaluation & debugging)

Decomposition

2D to 3D

Decomposition is all about breaking down a complex
problem into smaller, more manageable parts.
Problem solving requires breaking down before building
up again.

Think about where you will start building this model –
top/bottom/left/right?

How many bricks do you see? Which colour brick has more
than 1 brick in the model?

How many full bricks (all 8 studs) can you see?

The idea of decomposition is to work backward from end to beginning and to break large
problems into smaller ones that can more easily be solved. We all encounter problems on a
day-to-day basis. Some are small and easy to solve, and there are some which are larger, more
complex, and difficult. Through coding, children learn to think and learn about different
situations that are not the norm. They learn to analyse options and have to come up with a
way to solve any challenges they come across. These problem-solving skills are a great benefit
in their day to day lives and can help them to solve real-life situations.

Computer programmers can’t just
look at a large problem and fix it
right away

Decomposition
They have to

break it down into
the smallest

possible pieces,
solve each one of

those little
problems, then

build those
smaller solutions
together to solve

the larger
problem they
started with.

The idea of decomposition is to work
backward from end to beginning and to
break large problems into smaller ones

that can more easily be solved.

Through coding, children learn to think and learn
about different situations that are not the norm.

These problem-solving skills are a great benefit in
their day to day lives and can help them to solve

real-life situations.
Computer programmers can’t just look at a large

problem and fix it right away.

For example think about making an omelette
for your breakfast. Before you can get to the
finished product, you have to get out a frying

pan and put it on the hob, crack your eggs into
a cup, whisk them, pour them into the pan, fry

them, add seasoning, etc.

Computational
Thinking

What is important? –
Focusing on the important
information only, ignoring
irrelevant detail
(abstraction)

• Abstraction is all about focusing only on the
important details, while ignoring irrelevant
information.

• It simplifies problems and prevents
unnecessary repetition.

• Pulling out specific differences to make one
solution work for multiple problems.

• Use only the simplest representations of the
problem that are necessary in order to solve it.

Abstraction

Playing Pictionary – creating simple, quick sketches for a
partner to guess what they are representing. In doing this,
they learn that they are ignoring unimportant details
and only including that which is most important – this is
abstracting. PICTIONARY

Pattern regognition

By analysing a sequence, we can learn to spot patterns.
This helps us reduce the amount of work we need to do as we can reuse code for the same
problem or section. This makes the problem much easier to solve!
Pattern recognition is looking for similarities and differences between and within problems
Once patterns are ascertained, it is easier to define and solve the problem
The patterns can be recreated using algorithms
The repetition of the patterns is looping, and can be further extended to concept such as
reiteration and reuse
Loop (Repeat the pattern)

You could use the coding tokens now if you feel confident. Will do with the coding
mat later on)

Pattern Recognition
What is the same?–
Looking for similarities among and within problems (pattern recognition)

Young children can learn the basic concepts
of coding. These concepts are important
stepping stones not only for learning to
code, but for developing skills like critical
thinking and problem solving.

A sequence is a particular order of instructions in
order to complete a specific task.
As a coder, it is important to be able to look for
similarities among and within problems.
Spotting the similarities makes it easier of us to solve
the problem!

Dice
Loop
Bug

Sequencing

What is the same?
What is different?

Extend the code (pattern)
Build a colour sequence– groups of 4
Build a 3D upright sequence – groups of 4
Tower
Create your own sequence of code

When we write code, we have to get the sequence of steps
right. A sequence is the order of tasks. When designing an
algorithm, the order of tasks matters.
Computers aren’t smart and need to be given instructions in a
specific order or they won’t be able to properly execute the
command.

By analysing a sequence, we can learn to spot patterns. This
helps us reduce the amount of work we need to do as we can
reuse code for the same problem or section. This makes the
problem much easier to solve!
Pattern recognition is looking for similarities and differences
between and within problems
Once patterns are ascertained, it is easier to define and solve
the problem
The patterns can be recreated using algorithms
The repetition of the patterns is looping, and can be further
extended to concept such as reiteration and reuse
Loop (Repeat the pattern)

You could use the coding tokens now if you feel confident. Will
do with the coding mat later on)

LOOP

Pattern Recognition
Computers aren’t smart and need to be given instructions

in a specific order or they won’t be able to properly execute
the command.

By analysing a sequence, we can learn to spot patterns.
This helps us reduce the amount of work we need to do as
we can reuse code for the same problem or section.
This makes the problem much easier to solve!

Pattern recognition is
looking for similarities and
differences between and

within problems
Once patterns are

ascertained, it is easier to
define and solve the problem

The patterns can be
recreated using

algorithms

The repetition of the
patterns is looping,
and can be further

extended to concept
such as reiteration

and reuse

Loop (Repeat the
pattern)

Patterns are not just found in math, but in art, nature and
music, too. Being able to identify, recognise & build upon
sequences will help children in other subjects, like science &
geography.

Examples of Algorithmic thinking

To give the exact instruction
If they mis one step the

outcomes would be wrong.
That is coding!!

•English Language Arts: Students map a flow chart detailing steps for
determining whether to use a colon or dash in a sentence.
•Mathematics: In a word problem, students develop a step-by-step
process for how they answered a question that can then be applied to
similar problems.

INTEGRADE WITH OTHER SUBJECTS
Languages: Students apply new vocabulary and practice
speaking skills to direct another student to perform a task,
whether it’s ordering coffee at a café or navigating from one
point in a classroom to another.
•Arts: Students create instructions for drawing a picture that
another student then has to use to recreate the image.

Common examples include: the recipe for baking a
cake, the method we use to solve a long division
problem, the process of doing laundry, and the
functionality of a search engine are all examples of an
algorithm.

Tying Your Shoes
Any step-by-step process that is completed the same way every time
is an algorithm. A good example of this in everyday life is tying your
shoes. There are a limited number of steps that effectively result in a
traditional shoelace know (known as the “bunny rabbit” or “loop,
swoop and pull” knot). Chances are that you and your students follow
one of these algorithms every time you tie your shoes.

Examples of Algorithmic thinking

If you are folding origami
cranes, your first one
might take a while as you
get used to it. By the
third crane, your brain
will recognise the
process and be able to
apply it faster. The next
time you do origami of
any sort, you will be able
to recognise different
folds and apply what you
learned from the crane

https://www.twinkl.co.za/resource/t-t-20839-origami-crane-activity-instructions
https://www.twinkl.co.za/resource/t-t-20839-origami-crane-activity-instructions

Algorithmic thinking
is a critical skill and
enables learners to

construct new
algorithms to solve

given problems.

Process
The answer that the
participants provide is not
important.

What is important is the
process of discussing
which line of code is
correct:

Algorithmic thinking – people who solve jigsaw puzzles regularly may often devise their own
strategies for solving puzzles quickly. What is yours?

This activity shows that teachers can already use things around their classroom to teach coding – we
just need to use the right words and meaning!

Decomposition – Chunking up a problem
into smaller more manageable chunks is an
effective way to solve a problem.

Abstraction – the completed puzzle
forms an image, a

model/representation of something
and can hide the complexity of all
the separate pieces required to fit

together to complete it.Evaluation – testing out
our strategies for
solving puzzles and
improving them along
the way.

Generalisation – If we arrive at one strategy
to solve a single puzzle quickly and effectively,
will the same strategy work for other jigsaw
puzzles or will we need to adjust our algorithm to
accommodate multiple puzzle sets?

Evaluating and debugging

Evaluate process, find errors then problem solve solutions

A single error in a line of code can cause a computer program
to go haywire or stop working entirely. Luckily, coding has a
process for dealing with errors called debugging. Debugging
means finding and fixing errors in code. Mistakes in
programming are known as bugs

Back in 1945 Grace Hopper, one of the female pioneers of
computer science, found an error caused by a moth trapped
between the points at Relay 70, Panel F, of a Calculator being
tested at Harvard University. She removed the moth, and
attached it to her test logbook, writing 'First actual case of bug
being found', and so popularised the term 'debugging' for
testing and fixing a computer program.

• Evaluation is to see whether the thing we made does
what we wanted it to do.

• Debugging is figuring out how it does not work as we
want it to.

• The process itself consists of identifying the cause of
an error and fixing it.

Debug Six Bricks

• Put your bricks in a 0 or 1 position (vertical and
horizontal)

• We will show you a sequence of bricks below

• Can you figure out which parts of your sequence
is different?

• Can you debug your Six Bricks code?

Coding
Computational thinking

• Create a square grid (chalk, tape) - e.g., 6 x 6 square
• Colour some of the squares. These squares are the collection zones
• The programmer must code (tell) the robot to collect all the bricks
• The robot must bring the bricks to the end zone
• The robot can start anywhere on the grid. The programmer then must

direct the robot to land on one of the brick squares.
• The programmer can only speak in ‘code’, meaning that they must tell

the robot EXACTLY how to get there.

Code:

• Take x steps forward

• Take x steps backward

• Now Turn

• Turn left

• Turn right

Presenter Notes
Presentation Notes
When we write code, we must get the sequence of steps right. “Robots” need to remember that they can only do exactly what their coder tells them to do. Play this coding game using whole body. Other examples could be a treasure hunt – using verbal instructions on how to find a treasure or using a treasure map.

Developing
computational
thinking

Moving Around Mat - Algorithms
An algorithm is a set of instructions given to a computer so that the
computer will execute a specific task. We use algorithms every day
and all the activities we do can be explained in a series of algorithms.

9

8

6 7

3

2 5

1

4

Presenter Notes
Presentation Notes
This is the Moving Around MatDo some of the activities in Trainer Guide 1 – Part 2The Moving Around Mat – uses the basics of sequence, moving from one point to another – different solutions to each problem.

Developing
computational
thinking

Crossing the B-Line
At a foundational level, before moving to
technology, it is important that children work
with objects or manipulatives to understand
space, directionality, process, sequencing,
forwards/backwards, left/right, up/down, etc.
Thinking computationally is not programming -
Simply put, programming is a set of instructions
that a computer must follow – the B-Line mat
practices this. Children have to listen to a set of
instructions and follow or execute these using
the bricks. At the end of the set of instructions,
children must evaluate where they went right or
wrong (debug).

Presenter Notes
Presentation Notes
B-Line Mat – focuses closely on spatial orientation and spatial reasoning (critical for mathematics). At a foundational level, before moving to technology, it is important that children work with objects or manipulatives to understand space, directionality, process, sequencing, forwards/backwards, left/right, up/down, etc. Thinking computationally is not programming - Simply put, programming is a set of instructions that a computer must follow – the B-Line mat practices this. Children have to listen to a set of instructions and follow or execute these using the bricks. At the end of the set of instructions, children must evaluate where they went right or wrong (debug).

Introducing the coding mats

Coding
Coding Maze Mat

Presenter Notes
Presentation Notes
On the mat, we will take what we did outside, and play on a smaller maze.Ask the participants to place their bricks anywhere and in pairs, go from one colour to another using their fingers and words.How difficult was it to communicate the way to move from start to finish? Now we will show how coding helps us make that communication easier.

Coding
Computational thinking with symbols

Presenter Notes
Presentation Notes
This time we will use code (pictures) to move around the maze.Ask participants to place bricks (covering 2 squares) anywhere on the mat. Using the direction arrows to track a path from the red to yellow brick. Could you have taken a different path to move between the bricks?Work with your partner/group – allow each person to have a chance to code a pathway.ImportantOnce they have played a bit, ask the participants to make a line of code on the reverse of the coding mat; this will get students used to reading code away from the maze, which is the way most coding software work.

HEADER
 Text
 Text
 Text
 Text
 Text
 Text

Paragraphs etc…….

HEADER
 Text
 Text
 Text
 Text
 Text
 Text

Paragraphs etc…….

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Foundation Phase Initiative
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Coding
	Developing computational thinking
	Developing computational thinking
	Slide Number 45
	Coding
	Coding
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

