Integration of reading

comprehension with foundation phase mathematics

PRESENTED BY: Dr Nadia Swanepoel
DATE: 9 February 2023

Roadmap

\checkmark Reading comprehension
\checkmark Reading comprehension strategies

\checkmark Foundation phase mathematics
\checkmark Practical strategies
\checkmark Teacher is the agent of change
\checkmark Enhance teaching and learning
\checkmark Word sum-wheel
\checkmark Practical implementation and examples

Value of stories

\checkmark Theme of the week
\checkmark Types of texts
\checkmark Drawings
\checkmark Manipulatives
\checkmark Props
\checkmark Music
\checkmark Dramatisation

Value of stories

\checkmark Know your learners
\checkmark Multiple intelligence theory
\checkmark Foster understanding
\checkmark Demystify mathematics
\checkmark Asking of leading questions

Reading comprehension startegies

Mathematics word problem solving

\checkmark Mathematics word problem solving is a product of reading comprehension
\checkmark Educational challenge around the world (Mellone, Verschaffel \& Van Dooren, 2017:1)
\checkmark Reasoning mathematically is fundamental to learning mathematics with understanding (Kim \& Kasmer, 2006)
\checkmark Complex process (Morales, Shute \& Pellegrino, 1985:41)
\checkmark "Demon problems" (Weber, 1966:314)
\checkmark Resistance against mathematics word problem solving

Value of mathematics word problems

\checkmark Meeting point for many different skills and processes
\checkmark Related in some way to real-world experiences
\checkmark Improves the learners' thinking ability
\checkmark Teaches learners to apply procedures
\checkmark Deepens conceptual understanding (Siagan, Saragih \& Sinaga, 2019:331)
\checkmark Mathematics can be fun
\checkmark Provide practice with real life problem situations
\checkmark Motivate learners to understand the importance of mathematics concepts
\checkmark Help learners to develop their creative, critical and problem-solving abilities (Chapman, 2006)

Relationship bełween reading comprehension and

 mathematics\checkmark Mathematics word problem solving is a product of reading comprehension (Light \& DeFries, 1995, Vilenius-Tuohimaa et al., 2008:409)
\checkmark Elements needed for mathematics modelling: \checkmark Reading fluency
\checkmark Word recognition
\checkmark Common ground
\checkmark Reasoning skills

Suggestions for integration of reading comprehension with

 mathematics

Creativity in the classroom

\checkmark Creativity is the heart of solving a problem, understanding the language used in a text and the ability to comprehend a text (Vuong \& Martin, 2014)
\checkmark Creativity within reading comprehension assists as a way of making sense of the mathematics register and the vocabulary involved.
\checkmark "Do schools kill creativity?" Sir Ken Robinson (2006)
\checkmark Intelligence is diverse, dynamic and distinct (Robinson, 2006)
\checkmark Total Physical response (TPR) is a method of teaching language or vocabulary concepts "where learners listen to instructions and respond by performing physical actions" (Joubert et al., 2019:332).

Practical strategies (videos)

\checkmark Three reads approach

\checkmark who and what
\checkmark number information
\checkmark what is the story asking

Practical strategies (videos)

\checkmark CUBES

(C) circle
(U) underline
(B) box
(E) evaluate
(S) solve

Practical strategies (videos)

\checkmark Vocabulary development faster, larger, shorter, slower, higher and quicker

Practical strategies (videos)

\checkmark Four steps in solving a mathematics word problem
(1)Understand
(2)Plan
(3)Solve
(4)Check

Application of the word sum-wheel

\checkmark Peer and group instruction
\checkmark Practical application
\checkmark Play
\checkmark Creativity
\checkmark Real-life experiences
\checkmark Including the MI theory
\checkmark Knowledge of learners
\checkmark Choice of text

540

 word problem solving instruction
Questions?

nadia.swanepoel1@up.ac.za

5400

$$
\stackrel{\square}{\square}
$$

