TERM 1	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEE	10-11
CAPS TOPICS (44 HRS)	MECHANICS: Vectors in two dimensions (2 hrs)	MECHANICS: Vectors in two dimensions (4 hrs)	MECHANICS: Vectors in two dimensions (2 hrs) MECHANICS: Newton's laws (2 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's Universal Law (4 hrs)	ELECTRICTY \& MAGNETISM: Electrostatics (4 hrs)	ELECTRICTY \& MAGNETISM: Electrostatics (4 hrs)	ELECTRICTY \& MAGNETISM: Electrostatics (4 hrs)	CONTROL TEST (2 hrs)
TOPICS, CONCEPTS, SKILLS AND VALUES	- Define a resultant - Determine the resultant of vectors (maximum four) on a Cartesian plane, using the component method - Sketch the vertical vector $\left(R_{y}\right)$ and the horizontal vector $\left(\mathrm{R}_{\mathrm{x}}\right)$ on a Cartesian plane	- Calculate the magnitude of the resultant using the theorem of Pythagoras - Determine the direction of the resultant using simple trigonometric ratios - Determine the resultant (R) of two vectors graphically using either the tail-to-head or tail-to-tail method (parallelogram method) as well as by calculation (component method) for a maximum of four vectors in both 1 dimension and 2dimensions - Explain the meaning of a closed vector diagram	Vectors in two dimensions - Resolve a vector R into its horizontal $\left(R_{x}\right)$ and vertical (R_{y}) components using R_{x} $=R \cos \theta$ and $\mathrm{R}_{\mathrm{y}}=\mathrm{R} \sin \theta$ where θ is the angle between r and the x axis Newton's laws - Define normal force, N - Define frictional force, f - Know that a frictional force: - Is proportional to the normal force - Is independent of the area of the surfaces that are in contact with each other	- Define the static frictional force, f_{s} - Solve problems using $\mathrm{f}_{\mathrm{s}}^{\max }=\mu_{\mathrm{s}} \mathrm{~N}$ - Define the kinetic frictional force, f_{k} - Solve problems using $\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{~N}$ - Draw force diagrams - Draw free-body diagrams - Resolve a twodimensional force, e.g. the weight of an object on an inclined plane, into its parallel ($F_{N_{1}, \text {, }}$) and perpendicular (F_{\perp}) components - Determine the resultant/ net force of two or more forces - State Newton's first law of motion - Define inertia and state that the mass of an object is a quantitative measure of its inertia - Discuss why it is important to wear seatbelts using Newton's first law of motion	- State Newton's second law of motion In symbols: $\mathrm{F}_{\text {net }}=\mathrm{ma}$ - Draw force diagrams and free-body diagrams for objects that are in equilibrium or accelerating - Apply Newton's second law of motion to a variety of equilibrium and nonequilibrium problems including: A single object: - Moving in a horizontal plane with or without friction - Moving on an inclined plane with or without friction - Moving in the vertical plane (lifts, rockets, etc.)	- Apply Newton's second law of motion to a variety of equilibrium and nonequilibrium problems including: Two-body systems (joined by a light inextensible string): - Both on a flat horizontal plane with or without friction - One in a horizontal plane with or without friction, and a second hanging vertically from a string over a frictionless pulley - Both on an inclined plane with or without friction - Both hanging vertically from a string over a frictionless pulley	- State Newton's third law of motion - Identify Newton III force pairs (action-reaction pairs) and list the properties of the force pairs (action-reaction pairs) - State Newton's law of universal gravitation - Solve problems using $F=G \frac{m_{1} m_{2}}{d^{2}}$ - Calculate acceleration due to gravity on earth using $g=\frac{G M}{r_{E}^{2}}$, and on another planet using $g=\frac{G M_{p}}{r_{p}^{2}}$, where M_{p} is the mass of the planet and r_{p} is the radius of the planet - Explain the difference between the terms weight and mass - Calculate weight using the $w=m g$ - Calculate the weight of an object on other planets with different values of gravitational acceleration - Explain the term weightlessness	- State Coulomb's law - Solve problems using $F=\frac{k Q_{1} Q_{2}}{r^{2}}$ for charges in one dimension (1D) restrict to three charges - Solve problems using $F=\frac{k Q_{1} Q_{2}}{r^{2}}$ for charges in two dimensions (2D) for three charges in a right-angled formation (limit to charges at the 'vertices of a rightangled triangle')	- Describe an electric field as a region in space in which an electric charge experiences a force - Draw electric field patterns for the following configurations: - A single point charge - Two-point charges (one negative, one positive OR both positive OR both negative) - A charged sphere (Restrict to charges identical in magnitude) - Define the magnitude of the electric field at a point as the force per unit charge $E=\frac{F}{Q}$ \vec{E} and \vec{F} are vectors. - Solve problems using the equation $E=\frac{F}{Q}$	- Calculate the electric field at a point due to a number of point charges, using the equation $\mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{r}^{2}}$ to determine the contribution to the field due to each charge Restrict to three charges in a straight line	ONE PAPER (100 marks) - Vectors in two dimensions - Newton's laws - Electrostatics

2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11

TERM 1 REQUISITE PREKNOWLEDGE		WEEK 1 - Vectors and scalars - Representation of vectors	WEEK 2 - Vectors and scalars - Force and unit of force	WEEK 3 - Vectors and scalars	WEEK 4 - Equations of motion - Force and free-body diagrams - Frictional forces	WEEK 5 - Equations of motion - Force and free-body diagrams - Frictional forces	WEEK 6 - Equations of motion - Force and free-body diagrams - Gravitational acceleration	 WEEK 7 - Inertia -	WEEK 8 - Positive and negative charges - Electrostatic forces - Conservation of charge - Vectors and scalars	WEEK 9 - Force, charge, vectors, and scalars	WEEK 10-11	
$\begin{aligned} & \text { REQ } \\ & \text { KNO } \end{aligned}$	ISITE PRELEDGE										- Electric field - Vectors and scalars - Charges	
$\begin{aligned} & \hline \text { RES } \\ & \text { THA } \\ & \text { ENH } \end{aligned}$	URCES (OTHER TEXTBOOK) TO NCE LEARNING	- Apparatus for experiment below - Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Apparatus for experiment below - Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	
	INFORMAL ASSESSMENT: REMEDIATION	- Practical: Determine the resultant of three non-linear force vectors - Homework	- Homework - Informal test	- Homework	- Practical: The effect of different surfaces on the maximum static frictional force - Homework	- Homework	- Homework - Informal test	- Homework - Informal test	Homework	- Homework - Informal test	Homework	
	SBA (FORMAL)	None	None	None	None	Formal practical: Newton's second law of motion OR verification of gravitational acceleration	None	None	None	None	None	Control test

2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11
2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11 (TERM 2)

TERM 2	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11
CAPS TOPICS	MARCH CONTROL TEST: Discussion (2 hrs)	ELECTRICITY \& MAGNETISM: Electromagnetism (4 hrs)	ELECTRICITY \& MAGNETISM: Electromagnetism (2 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (3 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (4 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (4 hrs)	MATTER \& MATERIAL: Atomic combinations (4 hrs)	 MATERIAL: Atomic combinations (4 hrs)	MATTER \& MATERIAL: Intermolecular forces (4 hrs)	 MATERIAL: Intermolecular forces (3 hrs)	Control Test (4 hrs)
TOPICS, CONCEPTS, SKILLS AND VALUES	- Discussion and corrections of March control test	- Magnetic field near a current carrying wire - Use the Right Hand Rule to determine the direction of the magnetic field associated with: (i) A straight current carrying wire (ii) A current carrying loop (single) of wire (iii) A solenoid - Draw the magnetic field lines around: (i) A straight current carrying wire (ii) A current carrying loop (single) of wire (iii) Solenoid - Discuss qualitatively the environmental impact of overhead electrical cables - Define: The Magnetic flux, (f $=B A \cos \theta$, where for a loop of area A in the presence of a uniform magnetic field B, the magnetic flux (Φ) passing through the loop, $\Phi=B A \cos \theta$, where θ is the angle between the magnetic field B and the normal to the loop of area (A) The induced current flows in a direction so as to set up a magnetic field to oppose the change in magnetic flux	- State Faraday's Law - Use words and pictures to describe what happens when a bar magnet is pushed into or pulled out of a solenoid connected to a galvanometer - Use the Right Hand Rule to determine the direction of the induced current in a solenoid when the north or south pole of a magnet is inserted or pulled out	- State Ohm's Law in words - Interpret data, graphs on the relationship between current, potential difference and resistance at constant temperature - State the difference between ohmic and non-ohmic conductors and give an example of each - Solve problems using $R={ }_{i}^{v}$ for circuits containing resistors that are connected in series and, or in parallel (maximum four resistors)	- Define power - Solve problems using $P=\frac{w}{\Delta t}$ - Recall that $\mathrm{W}=\mathrm{VQ}$ and by substituting $Q=I \Delta t$ and $V=I R$, the following are obtained: $\mathrm{W}=\mathrm{V} \mid \Delta \mathrm{t}$, $W=I^{2} R \Delta t$ $W=\frac{V^{2} \Delta t}{R}$ - Deduce, by substituting $P=\frac{W}{\Delta t}$ into above equations, the following equations: $P=V I, P=12 R$ $\text { and } P=\frac{V^{2}}{R}$ - Solve problems using $\mathrm{P}=\mathrm{VI}$, $P=l^{2} R$ and $P=\frac{v^{2}}{R}$ - Solve circuit problems involving the concepts of power and electrical energy	- Deduce that the kilowatt-hour (kWh) refers to the use of 1 kilowatt of electricity for 1 hour - Know that 1 kWh is an amount of electrical energy known as one unit of electricity - Calculate the cost of electricity usage given the power specifications of the appliances used, the duration and the cost of 1 kWh	- Define a chemical bond - Draw Lewis dot diagrams of elements - Determine the number of valence electrons in an atom - Explain, in terms of electrostatic forces and in terms of energy, why: - Two H atoms form an H_{2} molecule - He does not form He_{2} - Interpret the graph of potential energy versus the distance between nuclei for two approaching hydrogen atoms - Define: A covalent bond, a molecule - Draw Lewis diagrams for simple molecules, e g. H_{2}, $\mathrm{F}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$, $\mathrm{HF}, \mathrm{OF}_{2}, \mathrm{HOCl}$ and molecules with multiple bonds, e g $\mathrm{N}_{2}, \mathrm{O}_{2}$ and HCN - Discuss molecular shapes of H_{2} (linear) $\mathrm{H}_{2} \mathrm{O}$ (angular), NH_{3} (pyramidal), CO_{2} (linear), CH_{4} (tetrahedral) - Describe rules for bond formation - Define a bonding pair and a lone pair - Describe the formation of the dative covalent bond	- Define electronegativity - Describe, with an example, a nonpolar covalent bond - Describe, with an example, a polar covalent bond - Show polarity of bonds using partial charges, e g H ${ }^{\delta+} \mathrm{Cl}^{\delta-}$ - Compare the polarity of chemical bonds using a table of electronegativities - Explain that the character of a bond varies from nonpolar covalent ($\Delta \mathrm{EN}$ =0) to polar covalent $(0<\Delta E N<=1,7)$ to ionic ($\Delta \mathrm{EN}>1,7$) - Use difference in electronegativity and molecular shape to explain that polar bonds do not always lead to polar molecules - Define bond energy and bond length - Explain the relationship between bond energy and bond length - Explain the relationship between the strength of a chemical bond and bond length, size of bonded atoms and number of bonds	- Describe the difference between intermolecular forces and interatomic forces (intramolecular forces) using a diagram of a group of small molecules \& in words - Name and explain the different intermolecular forces (Van der Waals forces): - Mutually induced dipole forces or London forces - Dipole-dipole forces - Dipole-induced dipole forces - Hydrogen bonding - Ion-dipole forces: Forces between ions and polar molecules	- State the relationship between intermolecular forces and molecular mass - Explain the effect of intermolecular forces on boiling point, melting point, vapour pressure \& solubility - Consolidation of term 2 work	ONE PAPER 100 marks (60\% Physics, 40\% chemistry) - Atomic combinations - Intermolecular forces - Electric circuit - Electromagnetism

2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11

TERM 2		WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11
			- Calculate: Induced emf and induced current, for situations involving a changing magnetic field, use the equation for Faraday's Law, where $\Phi=B A \cos \theta$ is the magnetic flux and where $\varepsilon=-N \frac{\Delta \emptyset}{\Delta t}$									
REQUISITE PREKNOWLEDGE		- March question paper	- Positive \& negative charges - Electrostatic force - Electric field - Vectors and scalars	- Magnetic field - Current, potential difference	- Magnetic fields around currentcarrying conductors - Current, potential difference, resistance	- Current, potential difference, resistance, power - Electric circuits	- Current, potential difference, resistance, power - Electric circuits	- Chemical bonding - Electron configuration - Writing of formulae	- Periodic table - Electron structure - Valence electrons - Electron configuration	- Chemical bonding - Writing of formulae - Valency - Periodic table - Kinetic theory of gases	- Chemical bonding - Molecules - Periodic table - Kinetic molecular theory	- NA Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations
RESOURCES (OTHER THAN TEXTBOOK) TO ENHANCE LEARNING		- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Apparatus for experiment listed below - Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations - Practical: Magnetic fields around currentcarrying conductors	- Apparatus for experiment listed below - Study guides - Previous question papers - Mindset \& YouTube videos - pHET simulations - Practical: Induced current in a coil by moving a magnet in and out of the coil (demo)	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers YouTube videos - Simulations	NA
岦	INFORMAL ASSESSMENT: REMEDIATION	- Homework - Informal test	- Homework	- Homework - Informal test	- Homework - Practical: Ohm's Law	- Homework	- Homework	- Homework - Informal test	- Homework	- Homework - Informal test	Homework	NA
	SBA (FORMAL)	None	Control test									

2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11

2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11 (TERM 3)

TERM 3	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11
CAPS TOPICS	JUNE CONTROL TEST: Discussion and remedial of control test (3 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (3 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	CHEMICAL CHANGE: Energy and change (4 hrs)	CHEMICAL CHANGE: Type of reactions (4 hrs)	CHEMICAL CHANGE: Acids and bases (4 hrs)	MATTER \& MATERIAL: Ideal gas (4 hrs)	 MATERIAL: Ideal gas (4 hrs)	CONTROL TEST (3 hrs)
TOPICS, CONCEPTS, SKILLS AND VALUES	Discussion and corrections of the June control test	- Describe the mole as the SI unit for amount of substance - Define one mole - Describe Avogadro's number, N_{A}, as the number of particles (atoms, molecules, formula-units) present in one mole - Define molar mass - Calculate the molar mass of a substance given its formula - State Avogadro's Law - Know the molar gas volume, V_{M}, at STP is 22,4 $\mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$ - Do calculations using $n=\frac{m}{M^{\prime}}$, $\mathrm{n}=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{M}}},$ $n=\frac{\text { number of particles }}{N_{A}}$	- Interpret balanced equations in terms of volume relationships for gases - Define concentration - Calculate concentration, in $\mathrm{mol} \cdot \mathrm{dm}^{-3}$, using $c=\frac{n}{v}$ - Determine percentage composition of a compound - Determine the empirical formula and molecular formula of compounds - Do stoichiometric calculations including limiting reagents - Determine the percentage yield of a chemical reaction	- Determine the percentage CaCO_{3} in an impure sample of seashells (purity or percentage composition)	- Stoichiometric calculations with explosions as reactions e g $\begin{aligned} & 2 \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g}) \\ & +4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+ \\ & \mathrm{O}_{2}(\mathrm{~g}) \end{aligned}$ $\begin{gathered} 2 \mathrm{C}_{8} \mathrm{H1}_{8}+25 \mathrm{O}_{2} \rightarrow \\ 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ - Stoichiometric calculations using reaction in airbags (sodium azide): $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow$ $2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$	- Define heat of reaction (ΔH) - Define an exothermic reaction - Define and endothermic reaction - Classify, with reason, reactions as exothermic or endothermic - State the sign of ΔH for exothermic and endothermic reactions - Define activation energy - Define an activated complex - Draw or interpret fully labelled sketch graphs (potential energy versus course of reaction graphs) of catalysed and uncatalysed endothermic and exothermic reactions	- Write names and formulae of common acids: Hydrochloric acid, nitric acid, sulphuric acid and ethanoic acid (acetic acid) - Write names and formulae of common bases: Ammonia, sodium carbonate (washing soda), sodium hydrogen carbonate, sodium hydroxide (caustic soda) and potassium hydroxide - Define acids and bases according to the Arrhenius \& Bronsted-Lowrey theories - Identify conjugate acid-base pairs for given compounds - Describe the term amphiprotic or ampholyte - Write equations to show how an amphiprotic substance can act as acid or base - Write reaction equations for the dissolution of acids and bases in water - Write the overall equations for the reactions of acids with metal hydroxides, metal oxides and metal carbonates	- Describe an acid-base indicator as a weak acid, or a weak base, which colour changes as the H^{+}ion or the OH ion concentration in a solution change - Know the colours of litmus, methyl orange, phenolphthalein, and bromothymol blue in acids and in bases	- Describe the motion of individual molecules i.e. - collisions with each other and the walls of the container - molecules in a sample of gas move at different speeds - Explain the idea of 'average speeds' in the context of molecules of a gas - Describe an ideal gas in terms of the motion of molecules - Explain how a real gas differs from an ideal gas - State the conditions under which a real gas approaches ideal gas behaviour	- Describe the relationship between volume and pressure for a fixed amount of gas at constant temperature (Boyle's law): Practically By interpreting table of results Using graphs Using symbols (${ }^{\prime}$ ') and the words 'inversely proportional' -Writing a relevant equation - Explain the temperature of a gas in terms of the average kinetic energy of the molecules of the gas - Explain the pressure exerted by a gas in terms of the collision of the molecules with the walls of the container	ONE PAPER (100 marks) - Qualitative aspects of chemical change - Ideal gases and thermal properties - Energy and chemical change

2023/24 ANNUAL TEACHING PLANS: PHYSICAL SCIENCES: GRADE 11

TERM 3		WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11
REQUISITE PREKNOWLEDGE			- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations	- Chemical reactions	- Molecules - Kinetic molecular theory and phases of matter	- Molecules - Kinetic molecular theory and phases of matter	- Molar volume relationships	- Writing of formulae and balanced equations	
RESOURCES (OTHER THAN TEXTBOOK) TO ENHANCE LEARNING		- June control test question paper	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Phet simulations	- Apparatus: Boyle's law - Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	
	INFORMAL ASSESSMENT: REMEDIATION	- Homework	- Practical: Preparation of a standard solution - Homework	- Homework	- Homework - Informal test	Homework	- Homework - Exothermic and endothermic reactions - Exo- and endothermic reactions Writing formulae	- Homework - Informal test	- Homework - Writing of formulae and balanced equations	Homework	- Homework	
	SBA (FORMAL)	None	Titration	None	Boyle's Law							

2023／24 ANNUAL TEACHING PLANS：PHYSICAL SCIENCES：GRADE 11

2023／24 ANNUAL TEACHING PLANS：PHYSICAL SCIENCES：GRADE 11 （TERM 4）

TERM 4		WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8－10
CAPS TOPICS		SEPTEMBER CONTROL TEST：Discussion and remedial work of control test （2 hrs） CHEMICAL CHANGE： Types of reaction （ 1 hr ）	CHEMICAL CHANGE： Types of reaction （4 hrs）	CHEMICAL CHANGE： Types of reaction （4 hrs）	CONSOLIDATION AND REVISION （4 hrs）	FINAL EXAMINATION P1： 2 hrs P2： 2 hrs			
TOPICS，CONCEPTS， SKILLS AND VALUES		－Discussion and remedial work of control test	Acid－base reactions －Identify the acid and the base needed to prepare a given salt and write an equation for the reaction －Write down neutralisation reactions of common laboratory acids and bases Redox reactions －Explain the meaning of oxidation number －Assign oxidation numbers to atoms in various ions and molecules，e $\mathrm{g} \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$ ， $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ ，and HOCl by using oxidation number guidelines or rules	Redox reactions －Describe a redox （oxidation－reduction） reaction as involving an electron transfer －Describe a redox （oxidation－reduction） reaction as always involving changes in oxidation numbers －Identify a redox reaction and apply the correct terminology to describe all the processes ie oxidation，reduction， reducing agent，oxidising agent －Balance redox reactions by using half－reactions from the Table of standard reduction potentials	－All topics	A	All topics	All topics	Physics Paper 1 （150 marks） －Vectors in two dimensions －Newton＇s laws －Electrostatics －Electromagnetism －Electric circuits Chemistry Paper 2 （150 marks） －Atomic combinations －Intermolecular forces －Ideal gases and thermal properties －Quantitative aspects of chemical change －Energy and chemical change －Types of reaction
REQUISITE PRE－ KNOWLEDGE		Acid and base properties	Writing of formulae and balanced equations	Writing of formulae and balanced equations	NA	NA	NA	NA	NA
RESOURCES（OTHER THAN TEXTBOOK）TO ENHANCE LEARNING		－September control test question paper －Acid－base indicators	－Apparatus for practical below －Study guides －Previous question papers， －Mindset \＆YouTube videos －Simulations	－Table of standard reduction potentials －Study guides －Previous question papers， －Mindset \＆YouTube videos －Simulations	－Study guides －Previous question papers， －Mindset \＆YouTube videos －Simulations	－Study guides －Previous question papers， －Mindset \＆YouTube videos －Simulations	－Study guides －Previous question papers， －Mindset \＆YouTube videos －PhET simulations	－Study guides －Previous question papers， －Mindset \＆YouTube videos －PhET simulations	NA
忘弟苞e	INFORMAL ASSESSMENT： REMEDIATION	－Homework	－Practical：Acid－base titration －Homework	－Homework －Informal test	－Homework －Informal test	－Informal test －Homework	－Informal test －Homework	－Informal test －Homework	NA
	SBA（FORMAL）	None	Final examination						

